Dinesh kumar Assistant Professor Department of Zoology Multanimal Modi College Modinagar

ELECTRIC ORGANS IN FISHES

INTRODUCTION

- In some fishes adaptive organs are developed such as electric organs, poison glands, bioluminescent organs.
- Electric organs are seen in approximately 250 species of fishes.
- These glands are not specific to any class.
- These glands discharge electric shock.
- Different species use electric organs for different functions.

DISTRIBUTION OF ELECTRIC ORGANS IN FISHES

- Chondrichthyes
- 1. Torpedo
- 2. Raia
- 3. Narcine
- Osteichthyes
- 1. Electrophorus
- 2. Mormyrus
- 3. Malapterus
- Star-gazer

LOCATION OF ELECTRIC ORGANS

Morphology and position of electric organs in Electric fishes

BASIC STRUCTURE OF ELECTRIC ORGAN

- Each organs is made of multinucleated cells called electroplates, having transparent cytoplasm.
- These cells are embedded in jelly like material.
- One face of cell is smooth, supplied by nerve fibres, while the other face i.e. the rough face bears papillae.
- Each end of organ represents a pole.

T.S OF ELECTRIC ORGANS

T.S OF ELECTRIC ORGANS

· Electric Vagus Jan =

T'S OF ELECTRIC ORGANS

Neural spine - centrum Electric organ - Muscley Haemal spine

MALAPTERUS

Electric Discharge from Different Fishes:

1.	Electrophorus (Electric eel)	-	Maximum-5(X)-600V by large electric organs
		-	Minimum-10V by small electric organs
2.	Melapterurus (Electric catfish)		350-450 V
3.	Astroscopus (Star-gazer)	-	50 V
4.	Torpedo (Electric Ray)	-	40–50V
5.	Narcina (Ray)	.—	35-37V
6.	Raja (Skate)	_	4V
7.	Gymnotus	_	0.5-1.0V
8.	Stenarchids	-	High frequency 1700 Hz.

WORKING

- Initially a potential of -100mV is maintained by high influx of potassium and low influx of sodium.
- At excitation state, this potential is inversed momentarily at nervous surface (smooth surface) of electroplates, due to high influx of sodium inside electroplates.
- This momentary change builds up potential of +6omV or even more in some.

<u>WORKING</u>

- This change in potential shifts to adjacent electroplates, and causes a current flow.
- Impulse of excitation is received from brain through nerves.
- The direction of shift in potential varies in different species of fishes from dorsal to ventral, head to tail or vice-versa.

TYPES OF ELECTRIC FISH

<u>FUNCTIONS OF ELECTRIC</u> <u>ORGANS</u>

- Catching food.
- As defense organ.
- As a warning device
- Maintaining territory.
- Species Recognition.

ORIGIN OF ELCTRIC ORGANS

- Basically, electric cells in fishes are developed from muscle cells.
- At embryo stage, electric organs are filled with muscle fibers, just like region surrounding it.
- But slowly it muscles swell up and further differentiates into electric organs.
- In different species muscles of different area are used.

ORIGIN OF ELCTRIC ORGANS

Fish	Muscle
Torpedo	Branchial muscles
Mormyridea	Tail muscles
Malapterurus	Body muscles
Star -gazer	Eye muscles
Electrophorus	Tail muscle

